位置:首页 > 研究队伍  


唐定中


唐定中,博士,研究员,博士生导师
        1992年武汉大学生物系学士;1995年福建农业大学硕士;1996-1997年英国John Innes Centre访问学者;1998年福建农业大学博士。1998-1999中科院发育所博士后。1999-2006年Indiana大学博士后。2006年入选中国科学院“百人计划”。2015年获得“国家杰出青年科学基金”。

        我们实验室的研究方向为植物与病原菌的相互作用,主要研究植物抗病反应的分子机制及其信号转导途径。
 
        1.植物抗病的分子机制
        利用模式植物拟南芥,采用遗传学,分子生物学以及生物化学的方法,分离和鉴定植物抗病信号通路中的重要组分,研究植物抗病的分子机理。近年来,利用拟南芥与白粉菌互作体系,我们在植物抗病机制研究中取得了许多新的进展。例如,我们发现油菜素甾醇受体BRI1的底物BSK1是免疫受体复合体成员,与病原相关分子模式(PAMPs)受体FLS2互作,调控植物的抗病反应,揭示油菜素甾醇信号与植物基础抗性(PTI)之间的交互应答(Shi et al., 2013);发现钙调素结合的转录因子SR1作为水杨酸信号通路和乙烯信号通路在转录水平调控的一个关键交叉点,精细调控植物的抗性和衰老反应(Nie et al., 2012);发现26S蛋白亚基RPN1a直接参与植物的先天免疫反应 (Yao et al., 2012);发现在植物中THO/TREX蛋白复合体对mRNA的核质运输的调控作用,发现THO/TREX蛋白复合体的组分HPR1是基础抗性和乙烯信号的重要调节因子(Pan et al., 2012);此外,我们还发现细胞自噬过程影响白粉病的抗性,并证实自噬过程在植物细胞凋亡的调节中起重要作用( Wang et al.,2011)。我们最近发现EDR1与MKK4/5互作,揭示MAPK信号通路精细调控植物抗病性的分子机理(Zhao et al., 2014),而EDR4通过调控EDR1的亚细胞定位来影响植物先天免疫反应(Wu et al., 2015); 我们还发现非典型胞内免疫受体与胞吐在机制上的联系(Zhao et al., 2015)。我们将利用已有的研究基础,进一步解析植物抗病反应的信号转导途径和网络调控机制。
 
        2. 重要作物病害的抗性机制
        白叶枯和稻瘟病是水稻生产上最重要的两种病害。尽管近10多年来对这两种病的研究已取得了不少成果,克隆了多个白叶枯和稻瘟病的抗性基因,然而,对这些抗性基因的作用机制还很不清楚。我们利用水稻抗病品种及抗病功能缺失突变体,鉴定和克隆调控水稻白叶枯和稻瘟病抗性的基因,阐明水稻调控抗病反应的分子机制。
        小麦白粉病、赤霉病和锈病是小麦生产最主要的病害。由于小麦基因组复杂,目前对小麦病害的研究还很不够。在小麦白粉病方面,我们将以二倍体小麦祖先种乌拉尔图为基础,利用小麦功能基因组学研究中的最新成果,鉴定具有广谱和持久抗性的小麦白粉病抗性基因,为小麦抗白粉病育种中提供重要基因资源。在小麦赤霉病方面,我们通过与荷兰Wageningen大学Theo van der Lee博士合作,建立了小麦赤霉病的研究体系,对赤霉菌转座子突变体库进行筛选,鉴定小麦赤霉菌致病基因,研究赤霉菌致病机理(Zhao et al., 2011; Zhao et al., 2013;Zhao et al., 2014)。同时利用建立好的赤霉菌研究体系,筛选赤霉病的抗源,用于小麦赤霉病抗性改良。在小麦锈病方面,我们正在与南非Free State大学的Zakkie Pretorius 教授开展合作,研究小麦杆锈病的抗性机理。
 
        欢迎有志于植物抗病分子遗传学研究的青年学子报考研究生或到实验室从事博士后研究。并诚招实验室工作人员,待遇从优,工作地点:福建农林大学

PUBLICATIONS (*通讯作者)
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang C., Chen, X., Tang, D., Wang E.*. Plants Transfer Lipids to Sustain Colonization by Mutualistic Mycorrhizal and Parasitic Fungi. Science. 2017, 356:1172-1175
 
Shen, Q., Bourdais, G., Pan, H., Robatzek, S., Tang, D*. The Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. PNAS. 2017, 114:5749-5754
 
Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C*., Tang, D*. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal. 2017, 91:714-724
 
Liu, N., Hake, K., Wang, W., Zhao, T., Romeis, T., Tang, D*. CALCIUM-DEPENDENT PROTEIN KINASE5 associates with the truncated NLR protein TIR-NBS2 to contribute to exo70B1-mediated immunity. Plant Cell. 2017, 29: 746–759
 
Tang, D*.,Wang, G., Zhou, J*. Receptor kinases in plant-pathogen interactions: more than pattern-recognition. Plant Cell. 2017, 29: 618–637
 
Wang, Z., Cui, D., Liu, J., Zhao, J., Liu, C., Xin, W., Li, Y., Liu, N., Ren, D., Tang, D., Hu, Y*. Arabidopsis ZED1-related kinases mediate the temperaturesensitive ntersection of immune response and growth omeostasis. New Phytologist. 2017, 215:711-724.
 
Tang, D*., Zhou, J*. PEPRs spice up plant immunity. EMBO Journal. 2016, 35:4-5
 
Liu, S., Bartnikas, L.M., Volko, S.M., Ausubel, F.M., Tang, D*. Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance. Front. Plant Sci. 2016, 7:227. doi: 10.3389/fpls.2016.00227
 
Li, H., Zheng, Q., Pretorius, Z.A. Li, B., Tang, D., Li, Z*. Establishment and characterization of new wheat-Thinopyrum ponticum addition and translocation lines with resistance to Ug99. J Genet Genomics. 2016, 43: 573-575.
 
Wu, G., Liu S., Zhao, Y., Wang, W., Kong, Z., Tang, D*. ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of EDR1 in Arabidopsis. Plant Cell. 2015, 27: 857–873
 
Zhao, T.#, Rui, L.#, Li J.#, Nishimura M., Vogel J., Liu, N., Liu, S., Zhao, Y., Dangl, J., Tang, D*. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genetics. 2015, 11: e1004945 (#These authors contributed equally).
 
Wang, J., Qu, B., Dou, S., Li, L., Yin, D., Pang, Z., Zhou, Z., Tian, M., Liu, G., Xie, Q., Tang, D., Chen, X., Zhu L. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biology, 2015, 15, 1
 
Zhao, C., Nie, H., Shen, Q,, Zhang, S., Lukowitz, W., Tang, D*. EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genetics. 2014, 10: e1004389
 
Zhao, C., Waalwijk, C., de Wit, P. J., Tang, D., van der Lee, T. Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearum that show distinct and co-regulated gene expression patterns. BMC Genomics. 2014, 15: 191.
 
Shi, H., Shen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., Zhao, T., Katagiri, F., Tang, D*. BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell, 2013, 25: 1143-1157
 
Wang, Y., Yu, B., Zhao, J., Guo, J., Li, Y., Han, S., Huang, L., Du, Y., Hong, Y., Tang, D., Liu, Y. Autophagy contributes to leaf starch degradation. Plant Cell, 2013, 25: 1383-1399
 
Ling, H.-Q., Zhao, S., Liu, D., J. Wang, Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu., H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J.,  Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.-C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87-90.
 
Wu, T., Tang, D., Chen W., Huang H., Wang R., Chen Y. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene. 2013, 527:235-242.
 
Shi, H., Yan, H., Li, J., Tang, D*. BSK1, a receptor-like cytoplasmic kinase, involved in both BR signaling and innate immunity in Arabidopsis. Plant Signal Behav. 2013, 8: e24996
 
Wu, T., Chen, Y., Chen, W., Zou, S., Zhang, Y., Lin, Y., Liang, Z., Tang, D. Transgenic expression of an insect diapause-specific peptide (DSP) in Arabidopsis resists phytopathogenic fungal attacks. Eur J Plant Pathol. 2013. 137:93-101
 
Guo, C. #, Wu, G. #, Xing, J., Li, W., Tang, D*., Cui B*. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Rep, 2013, 32:687–702. (#These authors contributed equally)
 
Zhao, C., Waalwijk, C., de Wit, P. J., Tang, D., van der Lee, T. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics, 2013, 14: 21.
 
 
Nie, H., Zhao, H., Wu, G., Wu Y., Chen, Y., Tang, D*. SR1, a Calmodulin binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiology. 2012, 158: 1847-1859
 
Pan, H.,. Li, S., Tang, D*. The THO/TREX complex functions in disease resistance in Arabidopsis. Plant Signal Behav. 2012, 7: 422-424
 
Pan, H.,. Li, S., Tang, D*.  HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant Journal. 2012, 69: 831-843
 
Wang, Y.,. Wu, Y., Tang, D*.. The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav. 2011, 6: 1408-1410
 
Zhao, C., Waalwijk, C., de Wit, P., van der Lee, T., Tang D*.  EBR1, a novel Zn2Cys6 transcription factor, affects virulence and apical dominance of hyphal tip in Fusarium graminearum. Mol Plant Microbe Interact. 2011, 24: 1407-1418
 
Wang, Y., Nishimura, M.T., Zhao, T., Tang, D*. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Journal. 2011, 68: 74-87
 
Nie, H., Wu, Y., Yao, C., Tang, D*. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics. 2011, 38: 137-148.
 
Ge, L., Peer, W., Robert, S., Swarup, R., Ye, S., Prigge, M., Cohen, J.D., Friml, J., Murphy, A., Tang, D., Estelle. M. Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 Is Required for Polar Auxin Transport. Plant Cell. 2010, 22: 1749-1761
 
Gou M., Su N., Zheng J., Huai, J., Wu G., Zhao J, He, J., Tang, D., Yang, S., Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant Journal. 2009, 60, 757–770
 
Tang, D.*, Simonich, M.T., Innes R. W. Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance to Botrytis cinerea in Arabidopsis. Plant Physiology. 2007, 144:1093-1103
 
Tang, D, Jules A., Frye C. A., Innes R. W. A Mutation in the GTP hydrolysis site of Arabidopsis Dynamin-Related Protein 1E Confers Enhanced Cell Death in Response to Powdery Mildew Infection. Plant Journal. 2006, 47:75-84
 
Tang, D., Ade, J., Frye C.A., Innes R. W. Regulation of Plant Defense Responses in Arabidopsis by EDR2, a PH and START Domain-Containing Protein. Plant Journal. 2005, 44:245-257
 
Tang, D., Christiansen, K. M., Innes R. W. Regulation of Plant Disease Resistance, Stress Responses, Cell Death and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. Plant Physiology. 2005, 138:1018-1026
 
Chen, Z., Kloek, A.P., Cuzick, A., Moeder, W., Tang, D., Innes R.W., Klessig D.F., McDowell J.M., Kunkel B.N. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Plant Journal. 2004, 37:494-504.
 
Tang, D. and Innes, R. W . Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant Journal. 2002, 32: 975-83
 
Frye#, C.A., Tang, D.#, Innes R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA. 2001, 98: 373-378. (#These authors contributed equally)
 
Chen, W., Tang, D., Suo, J., Zhang, Y., Xue, Y. Expressional profiling of genes related to pollination and fertilization in rice. C. R. Acad. Sci. Ser. III. 2001. 324:1111-1116
 
Tang, D., Wu, W., Li, W., Lu H., Worland, AJ. Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Thero. Appl. Genet. 2000, 101: 286-291
 
Wu, W., Li, W., Tang, D., Lu, H., Worland, A. J. Time-related mapping of QTLs underlying tiller number in rice. Genetics 1999, 151(1):297-303
 
Zhu, J. H., Stephenson, P., Laurie, D. A., Li, W., Tang, D., Gale, M. D. Towards rice genome scanning by map-based AFLP fingerprinting. Mol. Gen. Genet. 1999, 261:184-195.