位置:首页 > 研究队伍  


李传友


李传友,博士,研究员,博士生导师

 

         1991年山东农业大学学士;1994年山东农业大学硕士;1999年中国科学院遗传研究所博士。1999年至2003年,MSU-DOE Plant Research Laboratory博士后。2003年中国科学院“百人计划”入选者,2004年国家杰出青年科学基金获得者。担任国家重大科学研究计划项目首席科学家。任《Molecular Plant》, 《Plant Molecular Biology》Associate Editor, 《遗传》、《植物学报》编委。2016年入选中组部“万人计划”科技创新领军人才。连续多年入选Clarivate Analytics(科睿唯安)全球前1%高被引学者。
 
         李传友研究组长期从事植物防御与生长发育的调控机理研究。在Nature、Nature Plants、Science Advances、PNAS、EMBO Journal、Molecular Plant、Plant Cell等国际著名学术刊物发表论文110余篇,获授权专利14项、植物新品种权2项,育成农业农村部登记番茄品种2个。在国际权威出版社ELSEVIER出版英文专著《Hormone Metabolism and Signaling in Plants》。


主要研究内容:
        1. 茉莉酸作用机理
        茉莉酸既调控植物免疫,又在植物可塑性发育中发挥重要作用。茉莉酸信号通路的实质是核心转录因子MYC2介导的免疫转录重编程。一方面,我们着重研究中介体亚基MED25与MYC2形成的功能复合体MMC(MYC2-MED25 Functional Transcription Complex)在茉莉酸信号的激活、级联放大、终止以及精细调控中的作用机制(图1);另一方面,我们着重研究免疫激素茉莉酸与生长激素互作通过改变干细胞活性调控植物可塑性发育和器官再生的机理。
 
 
        2. 系统素/茉莉酸介导的植物系统性防御机理
        以番茄为模式系统,解析植物界发现的第一个多肽激素系统素作为细胞因子与茉莉酸互作共同调控的植物系统性防御的机理(图2)。在番茄中,多肽激素系统素和茉莉酸通过一条共同的信号通路调控植物系统性防御。过量表达系统素前体基因(PROSYSTEMIN)的转基因番茄组成型地表达茉莉酸反应。据此我们进行了大规模的遗传筛选获得了一系列系统素/茉莉酸途径被阻断的番茄突变体suppressor of prosystemin-mediated responsespr),并通过对这些突变体的研究分离关键组分,解析系统素/茉莉酸介导的植物系统性防御。
 
 
        3. 番茄功能基因组学及美味番茄分子设计
        开展番茄功能基因组学研究,与国际同行一道完成了栽培番茄及其起源种醋栗番茄基因组的精细序列分析。在此基础上,聚焦番茄重要病虫害抗性(颈腐根腐病、青枯病和灰霉病等)、品质(如花青素、番茄红素和果实形状等)和产量形成等重要性状,从丰富的种质资源入手,挖掘关键控制基因及优异等位变异,解析其作用机制。采用基因组编辑等生物育种方法培育安全高效、营养健康的美味番茄新品种(图3)。

KEY PUBLICATIONS (*Corresponding author):
 
1. Du M, Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J, Ren H, Cohen J, Li C*, and Gray W*. (2022). Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci. Adv. 8: eabj1570.
 
2. Zhou M, Deng L, Guo S, Yuan G, Li C*, and Li C-B*. (2022). Alternative transcription and feedback regulation suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way. Hortic. Res. 9: uhab045.
 
3. Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q*, and Li C*. (2021). Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiol. 185: 1166–1181.
 
4. Liu H, Liu L, Liang D, Zhang M, Jia C, Qi M, Liu Y, Shao Z, Meng F, Hu S, Yin Y*, Li C*, and Wang Q*. (2021). SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 24: 102926.
 
5. Zheng S, Ren P, Zhai M, Li C*, and Chen Q*. (2021). Identification of genes involved in root growth inhibition under lead stress by transcriptome profiling in Arabidopsis. Plant Mol. Biol. Rep. 39: 50–59.
 
6. Guo P, Chong L, Wu F, Hsu C, Li C, Zhu J-K, and Zhu Y*. (2021). Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. J. Integr. Plant Biol. 63: 802–815.
 
7. Zhai Q, Deng L, and Li C*. (2020). Mediator subunit MED25: at the nexus of jasmonate signaling. Curr. Opin. Plant Biol. 57: 78–86.
 
8. Zhai H, Zhang X, You Y, Lin L, Zhou W*, and Li C*. (2020). SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J. 39: e105047.
 
9. Wu F, Deng L, Zhai Q, Zhao J, Chen Q, and Li C*. (2020). Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32: 429–448.
 
10.Du M*, Zhou K, Liu Y, Deng L, Zhang X, Lin L, Zhou M, Zhao W, Wen C, Xing J, Li C-B*, and Li C*. (2020). A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J. 102: 1090–1100.
 
11.You Y, An C, and Li C*. (2020). Insect feeding assays with Spodoptera exigua on Arabidopsis thaliana. Bio-protocol 10: e3538.
 
12.Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li C-B*, and Li C*. (2020). A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol. Plant 13: 42–58. (Cover story). Highlighted with a Spotlights article in Molecular Plant, https://doi.org/10.1016/j.molp.2019.12.012
 
13.Shao Z, Zhao Y, Liu L, Chen S, Li C, Meng F, Liu H, Hu S, Wang J, and Wang Q*. (2020). Overexpression of FBR41 enhances resistance to sphinganine analog mycotoxin-induced cell death and alternaria stem canker in tomato. Plant Biotechnol. J. 18: 141–154.
 
14.Ren K, Tian X, Li S, Mei E, He M, Tang J, Xu M, Li X, Wang Z, Li C, and Bu Q*. (2020). Oryza sativa mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice. J. Integr. Plant Biol. 62: 793–811.
 
15.Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman A, He J, Zhang J, Hua D, Yang L, Chen Z, Li C, Wang B, Song C, Sun Q, Yang S, Gong Z*. (2020). The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. Plant Cell 32: 703–721.
 
16.Guo H, Sun Y, Yan H, Li C, and Ge F*. (2020). O-3-induced priming defense associated with the abscisic acid signaling pathway enhances plant resistance to Bemisia tabaci. Front. Plant Sci. 11: 93.
 
17.Yang T, Deng L, Zhao W, Zhang R, Jiang H, Ye Z*, Li C-B*, and Li C*. (2019). Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J. Genet. Genomics 46: 505–508. (Cover story)
 
18.Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X, Li C*, and Zhao J*. (2019). MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signaling. Nat. Plants 5: 616–625. (Recommended in F1000 Prime as being of special significance)
 
19.Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q*, Li C*, and Zhai Q*. (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127.
Highlighted with an In Brief article in Plant Cell, https://doi.org/10.1105/tpc.19.00004;
Highlighted with a Spotlight article in Trends Plant Sci., https://doi.org/10.1016/j.tplants.2019.06.001.
 
20.You Y, Zhai Q*, An C, and Li C*. (2019). LEUNIG_HOMOLOG mediates jasmonate-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31: 2187–2205.
 
21.Zhai Q, and Li C*. (2019). The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70: 3415–3424.
 
22.Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, and Scheres B*. (2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.
 
23.Zhang P, Wei J, Zhao C, Zhang Y, Li C, Liu S, Dickee M, Yu X, and Turlings TCJ*. (2019). Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc. Natl. Acad. Sci. USA. 116: 7387–7396.
 
24.Shi X, Preisser E, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, and Zhang Y*. (2019). Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC Plant Biol. 19: 556.
 
25.Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang D, and Qi Y*. (2019). The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant Cell Environ. 42: 1125–1138.
 
26.Qi L, Zhang X, Zhai H, Liu J, Wu F, Li C*, and Chen Q*. (2019). Elongator is required for root stem cell maintenance by regulating SHORT ROOT transcription. Plant Physiol. 179: 220–232.
 
27.Zhang R, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng Y-Q, Xiong L, Li C, Hetherington A, and Liang Y-K*. (2019). BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. 222: 335–348.
 
28.  Zhang X,Zhou W, Chen Q, Fang M, Zheng S, Ben S, and Li C*. (2018). The Mediator subunit MED31 is required for radial patterning of Arabidopsis roots. Proc. Natl. Acad. Sci. USA. 115: E5624–E5633.
 
29.Deng L, Wang H, Sun C, Li Q, Jiang H, Du M, Li C-B, and Li C*. (2018). Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genomics 45: 51–54.
 
30.Lian J, Han H, Zhao J, and Li C*. (2018). In-vitro and in-planta Botrytis cinerea inoculation assays for tomato. Bio-protocol 8: e2810.
 
31.An C, Li L, Zhai Q*, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, and Li C*. (2018). Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. USA. 114: E8930–E8939.
 
32.Guo H, Sun Y, Yan H, Li C, and Ge F*. (2018). O-3-induced leaf senescence in tomato plants is ethylene signaling-dependent and enhances the population abundance of Bemisia tabaci. Front. Plant Sci. 9: 764.
 
33.Zhang H, Yu P, Zhao J, Jiang H, Wang H, Zhu Y, Botella M, Samaj J, Li C, and Lin J*. (2018). Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol. 217: 799–812.
 
34.Zhai Q, Li L, An C, and Li C*. (2018). Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals. Plant Signal. Behav. 13: e1403709.
 
35.Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, and Ding Z*. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet. 14: e1007144.
 
36.Du M, Zhao J*, Tzeng D, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C-B, and Li C*. (2017). MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29: 1883–1906.
 
37.Li J, Li C, and Smith S.M. (Eds.). (2017). Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier. (Book)
 
38.Zhai Q, Yan C, Li L, Xie D, and Li C*. (2017). Jasmonates. In Hormone Metabolism and Signaling in Plants. 1st ed. Li J, Li C and Smith M.S. ed (London, United Kingdom: ELSEVIER Academic Press), pp. 243–263. (Book chapter)
 
39.Smith M, Li C, and Li J. (2017). Hormone function in plants. In Hormone Metabolism and Signaling in Plants. 1st ed. Li J, Li C and Smith M.S. ed (London, United Kingdom: ELSEVIER Academic Press), pp. 1–38. (Book chapter)
 
40.Qi J, Wu B, Feng S, Lu S, Guan C, Zhang X, Qiu D, Hu Y, Zhou Y, Li C, Long M, and Jiao Y*. (2017). Mechanical regulation of organ asymmetry in leaves. Nat. Plants 3: 724–733.
 
41.Liu B, Preisser E, Shi X, Wu H, Li C, Xie W, Wang S, Wu Q, and Zhang Y*. (2017). Plant defence negates pathogen manipulation of vector behaviour. Funct. Ecol. 31: 1574–1581.
 
42.Li C*, Li J*, Harter K, Lee Y, Leung J, Martinoia E, Matsuoka M, Offringa R, Qu L, Schroeder J, and Zhao Y. (2016). Toward a molecular understanding of plant hormone actions. Mol. Plant 9: 1–3.
 
43.Xu Y, Jin W, Li N, Zhang W, Liu C, Li C*, and Li Y*. (2016). UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. Plant Cell 28: 1200–1214.
 
44.Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, and Furutani M*. (2016). Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc. Natl. Acad. Sci. USA. 113: 6562–6567. 
 
45.Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, and Li J*. (2016). RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 26: 686–698.
 
46.Cui H, Wei J, Su J, Li C, and Ge F*. (2016). Elevated O-3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. Plant Sci. 253: 243–250.
 
47.Wang C, Hu T, Yan X, Meng T, Wang Y, Wang Q, Zhang X, Gu Y, Sanchez-Rodriguez C, Gadeyne A, Lin J, Persson S, Van Damme D, Li C, Bednarek S, and Pan J*. (2016). Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis. Plant Physiol. 171: 215–229.
 
48.Shi W, Chen X, Wang L, Gong Z, Li S, Li C, Xie B, Zhang W, Shi M, Li C, Zhang Y, and Song X*. (2016). Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J. Exp. Bot. 67: 2191–2205.
 
49.Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q*, and Li C*. (2015). Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27: 2814–2828. (Recommended in F1000 Prime)
 
50.Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavy P, Wabnik K, Geldner N, Benkova E, Le J, Fukaki H, Grotewold E, Li C, Friml J, Sack F, Beeckman T*, and Vanneste S*. (2015). A coherent transcriptional feed-forward motif controls auxin-sensitive PIN3 expression for lateral root development. Nat. Commun. 6: 8821.
 
51.Li C*. (2015). Toward understanding the stem-cell origin and the molecular regulation of rice tillering. J. Genet. Genomics 42: 47–48.
 
52.Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou J*. (2015). An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032–2041.
 
53.Wang Z, Mao J, Zhao Y, Li C, and Xiang C*. (2015). L-Cysteine inhibits root elongationthrough auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana. J. Integr. Plant Biol. 57: 186–197.
 
54.Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang D, and Qi Y*. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryzasativa L.). Plant J. 83: 818–830.
 
55.Ren Q, Sun Y, Guo H, Wang C, Li C, and Ge F*. (2015). Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. Entomol. Exp. Appl. 154: 188–198.
 
56.Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Zhuo Huang Z, Wang B, Jiang H, Huang T, Li C-B, Wei J, Kang L, Li J, and Li C*. (2014). Closely-related NAC transcription factors of tomato differentially regulate stomatal closure and re-opening during pathogen attack. Plant Cell 26: 3167–3184.
 
57.Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, and Xie D*. (2014). Interaction of MYC2 with EIN3 modulates antagonism between jasmonate and ethylene signaling. Plant Cell 26: 263–279.
 
58.Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, and Li Y*. (2014). The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell 26: 665–677.
 
59.Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, and Jiang D*. (2014). OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa. L). Plant J. 79: 106–117.
 
60.Wang S, Xu Y, Li Z, Zhang S, Li C, Qian Q, Jiang D, and Qi Y*. (2014). OsMOGS is required for N-glycan formation and auxin-mediated root development in rice. Plant J. 78: 632–645. 
 
61.Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, and Liu D*. (2014). Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol. 165: 1156–1170.
 
62.Zhang G, Li S, Wang L, Ye W, Zeng D, Rao Y, Peng Y, Hu J, Yang Y, Xu J, Ren D, Gao Z, Zhu L, Dong G, Hu X, Yan M, Guo L, Li C, and Qian Q*. (2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol. Plant 7: 1350–1364.
 
63.Song Y, Ye M, Li C, He X, Zhu, Wang R, Su Y, Luo S, and Zeng R*. (2014). Hijacking common mycorrhizal networksfor herbivore-induced defence signaltransfer between tomato plants. Sci. Rep. 4: 3915.
 
64.Zhao Q, Wu Y, Gao L, Ma J, Li C, and Xiang C*. (2014). Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche. J. Integr. Plant Biol. 56: 1151–1163.
 
65.Zhang J, Liu X, Li S, Cheng Z, and Li C*. (2014). The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS ONE 9: e88068.
 
66.Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J, Chetelat R, Zamir D, Stadler T, Li J, Ye Z, Du Y, and Huang S*. (2014). Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46: 1220–1226.
 
67.Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B, and Li C*. (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9: e1003964.
 
68.Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, and Palme K*. (2013). Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25: 4451–4468.
 
69.Sun J, Qi L, Li, Y, Zhai Q, and Li C*. (2013). PIF4 and PIF5 link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25: 2102–2114.
 
70.Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, and Li C*. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
 
71.Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y, Yuan L, and Li C*. (2013). The rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA. 110: 3167–3172.
 
72.Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek S, and Pan J*. (2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25: 499–516.
 
73.Wei J, Yan L, Ren Q, Li C, Ge F, and Kang L*. (2013). Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. Plant Cell Environ. 36: 315–327.
 
74.Song Y, Ye M, Li C, Wang R, Wei X, Luo S, and Zeng R*. (2013). Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 39: 1036–1044.
 
75.Jia C, Zhang L, Liu L, Wang J, Li C, and Wang Q*. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp lycopersici. J. Exp. Bot. 64: 637–650.
 
76.Sun J, Qi L, and Li C*. (2012). Hormonal regulation of polar auxin transport. Signaling and Communication in Plants, Springer Verlag volume. (Book chapter)
 
77.Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, and Li C*. (2012). The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and ABA signalings through interacting with MYC2 and ABI5. Plant Cell 24: 2898–2916.
 
78.The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature Volume: 485: Pages: 635–641. (Cover story)
 
79.Ren J, Li C-B, and Li C*. (2012). Tomato genome gets fully decoded--Paves way to tastier and healthier fruits. J. Genet. Genomics 39: 303–305.
 
80.Sun J, Qi L, Li Y, Chu J, and Li C*. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8: e1002594. (Recommended in F1000 Prime)
 
81.Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C-B, and Li C*. (2012). Arabidopsis plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol. 195: 872–882.
 
82.Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, and Li C*. (2012). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE 7: e50089.
 
83.Guo H, Kang L, Li C, Ren Q, Sun Y, Wang C, and Ge F*. (2012). Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE 7: e41426.
 
84.Liu L, Wei J, Zhang M, Zhang L, Li C, and Wang Q*. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J. Exp. Bot. 53: 5751–5761.
 
85.Cui H, Sun Y, Su J, Li C, and Ge F*. (2012). Reduction in the fitness of Bemisia tabaci fed on three previously infested tomato genotypes differing in the jasmonic acid pathway. Environ. Entomol. 41: 1443–1453.
 
86.Cui H, Sun Y, Su J, Ren Q, Li C, and Ge F*. (2012). Elevated O-3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Inte. 6: 425–437.
 
87.Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, and Li C*. (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23: 3335–3352. (Recommended in F1000 Prime)
 
88.Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung A, and Tao L*. (2011). RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell 23: 2880–2894.
 
89.Sun J, Chen Q, Qi L, Jiang H, Li S, Xu, Y, Liu F, Zhou W, Pan J, Li X, Palme K, and Li C*. (2011). Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol. 191: 360–375. (Recommended in F1000 Prime)
 
90.Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, and Li C*. (2011). The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating ABA signaling and drought response. Plant Physiol. 156: 550–563.
 
91.Sun J, Jiang H, and Li C*. (2011). Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4: 607–615.
 
92.Zhang L, Jia C, Liu L, Zhang Z, Li C, and Wang Q*. (2011). The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J. Exp. Bot. 62: 5405–5418.
 
93.Sun Y, Yin J, Cao H, Li C, Kang L, and Ge F*. (2011). Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS ONE 6: e19751.
 
94.Wei J, Wang L, Zhao J, Li C, Ge F, and Kang L*. (2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytol. 189: 557–567.
 
95.Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu C-M, and Li C*. (2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating post-embryonic maintenance of root stem cell niche. Plant Cell 22: 3692–3709.
 
96.Li C*, and Li J. (2010). Toward understanding the molecular mechanisms governing plant hormone actions: A brief introduction to the Major Research Program “Molecular mechanisms of plant hormone actions” funded by the National Natural Science Foundation of China (NSFC). Chinese Sci. Bull. 55: 2197.
 
97.Liu F, Jiang H, Ye S, Chen W-P, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, and Li C*. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res. 20: 539–552.
 
98.Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen J, Palme K, and Li C*. (2009). ArabidopsisASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21: 1495–1511.
 
99.Mueller LA et al., (2009). A snapshot of the emerging tomato genome sequence. The Plant Genome. 2: 78–92.
 
100.Jiang H, Li H, Bu Q, and Li C*. (2009). The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signal. Behav. 4: 464–466.
 
101.Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, and Li C*. (2009). The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of ABA signaling during seed germination and early seedling development. Plant Physiol. 150: 463–481.
 
102.Liang W, Li C-B, Liu F, Jiang H, Li S, Sun J, Wu X, and Li C*. (2009). The Arabidopsis homologs of CCR4-associated factor 1 exhibit mRNA deadenylation activity and play a role in plant defense responses. Cell Res. 19: 307–316.
 
103.Li C-B, Zhao J, Jiang H, Geng Y, Dai Y, Fan H, Zhang D, Chen J, Lu F, Shi J, Sun S, Chen J, Yan X, Lu C, Chen M, Cheng Z, Ling H, Wang Y, Xue Y, and Li C*. (2008). A snapshot of the Chinese SOL Project. J. Genet. Genomics 35: 387–390.
 
104.Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C*. (2008). Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147: 1947–1959.
 
105.Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, and Li C*. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18: 756–767.
 
106.Li H, Sun J, Xu Y, Jiang H, Wu X, and Li C*. (2007). The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol. Biol. 65: 655–665.
 
107.Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, and Li C*. (2007). The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 48: 1148–1158.
 
108.Zhai Q, Li C-B, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, and Li C*. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol. 48: 1061–1071.
 
109.Zheng W, Zhai Q, Sun J, Li C-B, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, and Li C*. (2006). Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol. 141: 1400–1413.
 
110.Li C-B, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang X, Lou Y, and Li C*. (2006). The wound-response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47: 653–663.
 
111.Li C-B, Sun J, Jiang H, Wu X, and Li C*. (2006). Systemic defense signaling in tomato. Chinese Sci. Bull. 50: 1817–1822.
 
112.Canoles MA, Beaudry RM, Li C, and Howe GA*. (2006). Deficiency of linolenic acid in lefad7 mutant tomato changes the volatile profile and sensory perception of disrupted leaf and fruit tissue. J. Amer. Soc. Hort. Sci. 131: 284–289.
 
113.Mueller LA*, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata,D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, and Zamir D. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genomics 6: 153–158.
 
114.Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, and Howe GA*. (2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17: 971–986.
 
115.Li C, Liu G, Xu C, Lee G, Bauer P, Ganal M, Ling H, and Howe GA*. (2003). The tomato Suppressor of prosystemin-mediatedresponse2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15: 1646–1661.
 
116.Li L#, Li C#, Lee GI, and Howe GA*. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA. 99: 6416–6421. (#These authors contributed equally to this work)
 
117.Li C, Williams MM, Loh Y-T, Lee GI, and Howe GA*. (2002). Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol. 130: 494–503.
 
118.Li L, Li C, and Howe GA*. (2001). Genetic analysis of wound signaling in tomato: evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol. 127: 1414–1417.