位置:首页 > 研究队伍  


焦雨铃


焦雨铃博士、研究员、博士生导师
 
        2001年,北京大学学士;2003、2006年,耶鲁大学硕士、博士;2006年-2010年,加州理工学院从事博士后研究;2010年至今,遗传与发育生物学研究所任研究员;2015年至今,中国科学院大学教授。兼任中国细胞学会理事、植物器官发生分会会长、青年工作委员会副主任,国际拟南芥研究执委会理事、中国代表等。先后入选中科院“百人计划”(终期评估优秀)、中组部“万人计划”青年拔尖人才和领军人才、科技部“中青年科技创新领军人才”、英国皇家学会“牛顿高级学者”;获国家自然科学基金委员会“优秀青年基金”、“国家杰出青年基金”资助;先后担任973青年项目、国家重点研发计划项目首席科学家;并获中国青年科技奖、CSPB杰出青年科学家奖、中源协和生命医学奖等奖项。担任《植物学报》、《植物生理学报》、Plant Cell、in silico PlantsJournal of Plant Research编委,Quantitative Plant BiologyFrontiers in Plant SciencePlant Development & EvoDevo 副主编。


        本实验室综合转录组分析、活体成像、分子遗传学、数学建模等方法,研究植物器官塑形,并应用于小麦穗型的分子设计。本实验室还开展合成基因组学研究,力图建立人工染色体技术

研究领域
        1. 叶片扁平化的建立机制:叶片是最基本的植物器官,通常是主要的光合作用场所。扁平宽大的形态有利于增大光合作用的面积,是常见的叶片特征。叶片的扁平化生长是伴随叶片发育过程逐渐形成的。本实验室的研究关注扁平化建立的调控机制,特别是植物激素生长素与生物力学在扁平化建立过程的作用。
 
        2. 干细胞重建:叶片的基部(叶腋处)能够形成新的干细胞团和分生组织,称为侧生分生组织。侧生分生组织产生侧芽,使植物能够产生分枝。开花后侧生分生组织形成花序分枝。因此,侧生干细胞的活性是决定小麦等作物关键农艺性状穗数、穗粒数的重要因素。本实验室通过活体成像、转录谱分析、以及遗传分析研究侧生干细胞团重建的转录调控网络。
 
        3. 植物人工染色体:合成生命是生命科学的新前沿。物理学家费曼说过:“What I cannot create, I do not understand”。在细菌、酵母中,科学家已经获得了完全人工合成的染色体,不仅深化了对基因组的认识,更为快速进化、重编程代谢通路提供了技术平台。在更为复杂的多细胞生物中,人工合成基因组尚未突破。本实验室与合作者力图在植物中建立基因组操作的技术体系,实现突破。

 


代表性论文
 
综述
1.Du, F. and Jiao, Y. (2020) Mechanical control of plant morphogenesis: concepts and progress. Curr. Opin. Plant Biol. 57: 16–23.
 
2.Du, F., Guan, C. and Jiao, Y. (2018) Molecular mechanisms of leaf morphogenesis. Mol. Plant 11: 1117-1134.
 
3.Wang, Y. and Jiao, Y. (2018) Axillary meristem initiation — a way to branch out. Curr. Opin. Plant Biol. 41: 61-66.
 
研究论文
1.Zhao, F., Du, F., Oliveri, H., Zhou, L., Ali, O., Chen, W., Feng, S., Wang, Q., Lü, S., Long, M., Schneider, R., Sampathkumar, A., Godin, C., Traas, J. and Jiao, Y. (2020) Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr. Biol. 30: 3972-3985.
Highlighted with a Dispatch article in Curr. Biol. 30: R1268-R1270
 
2.Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Chen, H., Wang, Y., Wang, Y., Liu, S., Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y. and Lu, F. (2020) Convergence within divergence: insights of wheat adaptation from Triticum population sequencing. Nat. Genet. doi:10.1038/s41588-020-00722-w.
 
3.Cao, X., Wang, J., Xiong, Y., Yang, H., Yang, M., Ye, P., Bencivenga, S., Sablowski, S. and Jiao, Y. (2020) A self-activation loop maintains meristematic cell fate for branching. Curr. Biol. 30: 1893-1904.
 
4.Tian, C., Wang, Y., Yu, H., He, J., Shi, B., Du, Q., Provart, N.J., Meyerowitz, E.M., and Jiao, Y. (2019) A gene-expression map of shoot domains reveals new regulatory mechanisms. Nat. Commun. 10: 141.
 
5.Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.-i., Lei, J., Zhang, L. and Jiao, Y. (2018) Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell 44: 204-216.
 
6.Guan, C., Wu, B., Yu, T., Wang, Q., Krogan, N.T., Liu, X. and Jiao, Y. (2017) Spatial auxin signaling controls leaf flattening in Arabidopsis. Curr. Biol. 27: 2940-2950.
Selected for F1000 Prime
 
7.Qi, J., Wu, B., Feng, S., Lü, S., Guan, C., Zhang, X., Qiu, D., Hu, Y., Zhou, Y., Li, C., Long, M. and Jiao, Y. (2017) Mechanical regulation of organ asymmetry in leaves. Nat. Plants 3: 724-733.
Featured on the cover
 
8.Wang, J., Tian, C., Zhang, C., Shi, B., Cao, X., Zhang, T.-Q., Zhao, Z., Wang, J.-W. and Jiao, Y. (2017) Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29: 1374-1387.
Featured on the cover
Highlighted with a Spotlight article in Trends Plant Sci 22: 815-817
 
9.Qi, J., Wang, Y., Yu, T., Cunha, A., Wu, B., Vernoux, T., Meyerowitz, E.M. and Jiao, Y. (2014) Auxin depletion from leaf primordia contributes to organ patterning. Proc. Natl Acad. Sci. USA 111: 18769-18774.
Highlighted with a Research Highlight article in Sci China Life Sci 58: 315-316
 
10. Tian, C., Zhang, X., He, J., Yu, H., Wang, Y., Shi, B., Han, Y., Wang, G., Feng, X., Zhang, C., Wang, J., Qi, J., Yu, R. and Jiao, Y. (2014) An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10: 755.
 
11. Wang, Y., Wang, J., Shi, B., Yu, T., Qi, J., Meyerowitz, E.M. and Jiao, Y. (2014) The stem cell niche in leaf axils is established by auxin and cytokinin in ArabidopsisPlant Cell, 26: 2055-2067.
Highlighted with an In Brief article in Plant Cell 26: 1836
Selected for F1000 Prime
 
12.Han, Y., Zhang, C., Yang, H. and Jiao, Y. (2014) Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristem in ArabidopsisProc. Natl Acad. Sci. USA, 111: 6840-6845.