Search
About us
Research Centers
Key Laboratories
Research
Faculty
CAS Members
Center for Genome Biology
Molecular Agrobiology
Developmental Biology
Molecular Systems Biology
Agro-Resources Research
International Cooperation
News
Resources
Education & Training
Join Us
Societies & Publications
Papers
Links
  Location: Home >> Faculty >> Developmental Biology
  Developmental Biology


QingFeng Wu


Education:
 
2000 - 2005   M.D.
Fudan Uiversity, Shanghai, China
2005 – 2012   Ph.D.
Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
 
Position:
 
7/2012 – 11/2016   Postdoctoral Researcher
Johns Hopkins University, School of Medicine, Baltimore, MD
1/2017 – Present    Principle Investigator
          Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
7/2018 – 12/2021   Principle Investigator
          Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
9/2020 – 12/2022   Principle Investigator
          Chinese Institute for Brain Research
 
Award:
 
1. Distinguished Student Award by Fudan University (2001-2005)
2. Merit Academic Researcher Award by Chinese Society for Cell Biology in Shanghai (2012)
3. Eli-Lilly Outstanding Graduate Thesis Award by Eli Lilly and Company (2012)
4. Presidential Scholarship (Special Prize) by Chinese Academy of Sciences (2012)
5. Shanghai Excellent Doctoral Thesis Award (2013)
6. Outstanding Doctoral Dissertation Award by Chinese Academy of Sciences (2013)
7. Human Frontier Science Program (HFSP) postdoctoral fellowship (2013)
8. Maryland Stem Cell Research Fund (MSCRF) award (2016)
9. Yihai Kerry Outstanding Mentor award (2021)
10. Special Invited Speaker Award of Youth Frontier Forum on Neural Cell Biology (2022)

 
Research interests:
 
(1) Hypothalamus Development: From Neurogenesis to Circuit Assembly
 
Hypothalamus maintains systemic homeostasis by regulating endocrine, autonomic and behavioral functions, ranging from hunger, sleep, thirst, circadian rhythm and body temperature to mood regulation, sex drive and hormonal release. However, little is known about the hypothalamus development including its patterning, neurogenesis and circuit assembly across different vertebrate species. We have been developing and applying sing-cell analysis approaches (single-cell lineage tracing, single-cell RNA-seq and single-cell genetic manipulation) to investigate how neurogenesis and nucleogenesis occur during hypothalamus development (Cell Stem Cell, 2021; PLoS Biol, 2018; Cell Regen, 2018; Neurosci Bull, 2022). Given the diverse neuronal diversity, complex neuronal connection and critical neuronal function in the hypothalamus, more efforts are required to decode the processes and mechanisms of neuronal generation and circuit assembly. 
(2) Hypothalamus Function, Hormones and Disorders
 
The hypothalamus secrets not only neurotransmitters and neuropeptides but also neurohormones to coordinate the interaction between brain and peripheral organs. Impaired neuronal fate determination and circuit assembly in the hypothalamus predisposes human beings to metabolic and endocrine disorders. To explore the physiological significance of hypothalamus development, we extensively investigate 1) novel neuronal subtypes regulating feeding behavior and body metabolism; 2) cellular mechanism underlying central precocious and delayed puberty (Sci Adv, 2022); and 3) genetic etiologies and pathological mechanisms of papillary craniopharyngioma (Nat Commun, 2021; J Endocrinol, 2018).  
(3) Homeostatic regulation of neural stem cells
 
Homeostasis maintenance of neural stem/progenitor cells is critical for neural development, tumor initiation and neural regeneration. Homeostatic dysregulation of embryonic neural progenitor cells causes neural developmental disorders, such as autism and intellectual disability. Homeostatic disruption of adult neural stem cells may result in schizophrenia, mood disorder and progeria. We have been using lineage tracing and genomic editing approaches to investigate the molecular mechanisms underlying homeostatic regulation of neural stem/progenitor cells under physiological and pathological conditions (Dev Cell, 2023; Cell Rep, 2020; Cell, 2012).

Publications (* Corresponding author):
  
39. Han, L., Liu, Z., Jing, Z., Liu, Y., Chang, H., Lei, J., Peng, Y., Wang, K., Xu, Y., Liu, W., Wu, Z., Li, Q., Shi, X., Zheng, M., Wang, H., Deng, J., Zhong, Y., Pan, H., Lin, J., Zhang, R., Chen, Y., Wu, J., Xu, M., Ren, B., Cheng, M., Yu, Q., Song, X., Wei, Y., Zhang, S., Dou, Y., Zhao, Y., Han, L., Zhu, Q., Xu, Y., Wang, S., Chen, H., Wang, D., Bai, Y., Liang,Y., Liu, Y., Chen, M., Xie, C., Bo, B., Li, M., Zhang, X., Ting, W., Chen, Z., Fang, J., Li, S., Jiang, Y., Tan, X., Zou, G., Xie, Y., Li, H., Tao, Q., Li, Y., Liu, J., Liu, Y., Hao, M., Wang, J., Wen, H., Liu, J., Yan, Y., Zhang, H., Sheng,Y., Han, M., Yu, S., Liao, X., Jiang, X., Wang, G., Liu, H., Wang, C., Feng, N., Liu, X., Ma, K., Xu, J., Han, T., Cao, H., Zheng, H., Chen, Y., Lu, H., Yu, Z., Zhang, J., Wang, B., Wang, Z., Xie, Q., Pan, S., Liu, C., Xu, C., Cui, L., Li, Y., Liu, S., Liao, S., Chen, A., Wu, Q.F, Wang, J., Liu, Z., Sun, Y., Mulder, J., Yang, H., Wang, Y.*, Li, C.*, Yao, J.*, Xu, X.*, Liu, L.*, Shen, Z.*, Wei, W.*, Sun, Y.* (2023)Spatially resolved molecular and cellular atlas of the mouse brain. bioRxiv. https://www.biorxiv.org/content/10.1101/2023.12.03.569501v1
 
38. Miao, Y., Fan, K., Peng, X., Li, S., Chen, J., Bai, R., Wei, Y., Deng, Y., Zhao, C.*, Wu, Q.F.*, Ge, M*., Gong, J.*, Wu, D.* (2023) Postoperative hypothalamic-pituitary dysfunction and long-term hormone replacement in patients with childhood-onset craniopharyngioma. Front Endocrinol.14:1241145.
 
37. Yao, Y., Chen, Z., Wu, Q.F., Lu, Y.*, Zhou X.*, Zhu, X.* (2023) Single-cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell-type-specific mechanisms. MedComm (2020). 4(5):e372.
 
36. Zhuang, Y., Li, Z., Xiong, S., Sun, C., Li, B., Wu, S., Li, J., Shi, X., Yang, L., Chen, Y., Bao, Z., Li, X., Sun, C., Chen, Y., Deng, H., Li, T., Wu, Q.F., Qi, L., Huang, Y., Yang, X.*, Lin, Y.* (2023) Circadian clocks are modulated by compartmentalized oscillating translation. Cell. 186(15):3245-3260.e23.
 
35. Zhu, X., Meng, J., Han, C.,Wu, Q.F., Du, Y., Qi, J., Wei, L., Li, H., He, W., Zhang, K., Lu, Y.* (2023) CCL2-mediated inflammatory pathogenesis underlies high myopia-related anxiety. Cell Discov. 9(1):94. doi: 10.1038/s41421-023-00588-2.
 
34. Zhuang, Y., Li, Z., Xiong, S., Sun, C., Li, B., Wu, S.A., Lyu, J., Shi, X., Yang, L., Chen, Y., Bao, Z., Li, X., Sun, C., Chen, Y., Deng, H., Li, T., Wu, Q.F., Qi, L., Huang, Y., Yang, X., Lin, Y. (2023) Circadian clocks are modulated by compartmentalized oscillating translation. Cell. 8674(15):3245-3260.
 
33.Sun, X., Chen, Z., Guo, X., Wang, J., Ge, M., Wong, S.Z.H., Wang, T., Li, S., Yao, M., Johnston, L.A., Wu, Q.F.* (2023) Stem cell competition driven by Axin2-p53 axis controls brain size during murine development. Dev Cell. 58(9):744-759.e11.
 
32.Yao, Y., Wei, L., Chen, Z., Li, H., Qi, J., Wu, Q.F., Zhou, X., Lu, Y., Zhu, X.* (2023) Single-cell RNA sequencing: Inhibited Notch2 signalling underlying the increased lens fibre cells differentiation in high myopia. Cell Prolif. 56(8):e13412.
 
31. Shi, X, Zhuang, Y., Chen, Z., Xu, M., Kuang, J., Sun, X., Gao, L., Kuang, X., Zhang, H., Li, W., Wong, S.Z.H., Liu, C., Liu, L., Jiang, D., Pei, D., Lin, Y.*, Wu, Q.F.* (2022) Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. Sci Adv. 8, eabq2987. DOI: 10.1126/sciadv.abq2987
 
30. Ge, M., Sheikhshahrokh, A., Shi, X., Zhang, Y.H., Xu, Z., Wu, Q.F.* (2022) A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neurosci Bull. 39, 645-658. DOI: 10.1007/s12264-022-00956-0
 
29. Hong, H., Zhao, Z., Huang, X., Guo, C., Zhao, H., Wang, G., Zhang, Y.P., Zhao, J.P., Shi, J., Wu, Q.F., Jiang, Y.H., Wang, Y., Li, L.M., Du, Z., Zhang, Y.Q.*, Xiong, Y.* (2022) Comparative proteome and cis-regulatory element analysis reveals specific molecular pathways conserved in dog and human brains. Mol Cell Proteomics. 21, 100261.
 
28. Wu, H.*, Fu, R., Zhang, Y.H., Liu, Z., Chen, Z., Xu, J., Tian, Y.*, Jin, W.*, Wong, S.Z.H.*, Wu, Q.F. (2022) Single-cell RNA sequencing unravels upregulation of immune cell crosstalk in relapsed pediatric ependymoma. Front Immunol. 13, 903246.
 
27. Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., Wang, X., Lu, H., Chen, X., Liu, X., Huang, X., Li, Z., Hong, Y., Jiang, Y., Peng, J., Liu, S., Shen, M., Liu, C., Li, Q., Yuan, Y., Wei X., Zheng, H., Feng, W., Wang Z., Liu, Y., Wang, Z., Yang, Y., Xiang, H., Han, L., Qin, B., Guo, P., Lai, G., Mu?oz-Cánoves, P., Maxwell, P.H., Thiery, J.P., Wu, Q.F., Zhao, F., Chen, B., Li, M., Dai, X., Wang, S., Kuang, H., Hui, J., Wang, L., Fei, J.F., Wang, O., Wei, X., Lu, H., Wang, B., Liu, S., Gu, Y., Ni, M., Zhang, W., Mu, F., Yin, Y., Yang, H., Lisby, M., Cornall, R.J., Mulder, J., Uhlén, M., Esteban, M.A.*, Li, Y.*, Liu, L.*, Xu, X.*, Wang, J.* (2022) Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 185, 1777-1792.
 
26. Yun. H., Dumbell, R., Hanna, K., Bowen, J., Mclean, S.L., Kantamneni, S., Pors, K., Wu, Q.F., Helfer, G.* (2022) The chemerin-CMKLR1 axis is functionally important for central regulation of energy homeostasis. Front Physiol. 13, 897105.
 
25. Zhao, Z., Zhang, D., Yang, F., Xu, M., Zhao, S., Pan, T., Liu, C., Liu, Y., Wu, Q.F., Tu, Q., Zhou, P., Li, R., Kang, J., Zhu, L., Gao, F., Wang, Y.*, Xu Z.* (2022) Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing. Cell Res. 32, 425-436.
 
24. Wu, H., Fu, R., Zhang, Y.H., Liu, Z., Chen, Z., Xu, J., Tian, Y., Jin, W., Wong, S.Z.H., Wu, Q.F. (2022) Single-cell RNA Sequencing of Pediatric Ependymoma Unravels Subclonal Heterogeneity Associated with Patient Survival. bioRxiv
https://www.biorxiv.org/content/10.1101/2022.02.26.482082v1
 
23. Yan, Y., Tian, M., Li, M., Zhou, G., Chen, Q., Xu, M., Hu, Y., Luo, W., Guo, X., Zhang, Cheng., Xie, H., Wu, Q.F., Xiong, W.*, Liu, S.*, Guan, J.* (2022) ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder. Neuron. 110, 1156-1172.
 
22. Wen, Q., Weng, H., Liu, T., Yu, L., Zhao, T., Qin, J., Li, S., Wu, Q.F., Tissir, F., Qu, Y., Zhou, L.* (2022) Inactivating Celsr2 promotes motor axon fasciculation and regeneration in mouse and human. Brain. 145(2): 670–683.
 
21. Chen, Z., Li, S., Xu, M., Liu, C., Ye, H., Wang, B., Wu, Q.F.* (2022) Single-cell Transcriptomic Profiling of the Hypothalamic Median Eminence during Aging. J Genet Genomics. 49, 523-536 (Cover story)
 
20. Wang, A., Wang, J., Tian, K., Huo, D., Ye, H., Li, S., Zhao, C., Zhang, B., Zheng, Y., Xu, L., Hua, X., Wang, K., Wu, Q.F., Wu, X., Zeng, T.*, Liu, Y.*, Zhou, Y.* (2021) An epigenetic circuit controls neurogenic programs during neocortex development. Development. 148 (22): dev199772.
 
19. Zhang, Y., Xu, M., Shi, X., Sun, X.L., Mu, W., Wu, H., Wang, J., Li, S., Su, P., Gong, L., He, M., Yao, M., Wu, Q.F.* (2021) Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell. 28, 1483-1499.
 
18. Mu, W., Li, S., Xu, J., Guo, X., Wu, H., Chen, Z., Qiao, L., Helfer, G., Lu, F., Liu, C., Wu, Q.F.* (2021) Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 12, 2288.
 
17. Zhu, X., Du, Y., Li, D., Xu, J., Wu, Q.F., He, W., Zhang, K., Zhu, J., Guo, L., Qi, M., Liu, A., Qi, J., Wang, G., Meng, J., Yang, Z.*, Zhang, K.*, Lu, Y.* (2021) Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia. Nat Commun. 12, 2102.
 
16. Chang, Y., Jiang, Y., Li, C., Wang, Q., Zhang, F., Qin, C.F., Wu, Q.F., Li, J., Xu, Z.* (2021) Different Gene Networks are Disturbed by Zika Virus Infection in a Mouse Microcephaly Model. Genom Proteom Bioinform. 18, 737-748.
 
15. Wang J., Li T., Wang J., Xu Z., Meng W., Wu, Q.F.* (2020) Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Rep. 33, 108495.
 
14. Zhang, Y., Xu, M., Li, S., Wu, H., Shi, X., Guo, X., Mu, W., Gong, L., Yao, M., He, M., Wu, Q.F.* (2020) Cascade Diversification Directs the Generation of Neuronal Diversity in Hypothalamus. bioRxiv. 125054.
 
13. Berg, D.A., Su, Y., Jimenez-Cyrus, D., Patel, A., Huang, N., Morizet, D., Lee, S., Shah, R., Rojas Ringeling F., Jain, R., Epstein, J.A., Wu, Q.F., Canzar, S., Ming, G.L.*, Song, H.*, and Bond, A.M. (2019) A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell. 18, 654-668.
 
12. Tang, C., Wang, M., Wang, P., Wang, L., Wu, Q., and Guo, W.* (2019). Neural Stem Cells Behave as a Functional Niche for the Maturation of Newborn Neurons through the Secretion of PTN. Neuron. 101, 32-44.
 
11. Xu, M., Wang, J., Guo, X., Li, T., Kuang, X., Wu, Q.F.* (2018) Illumination of neural development by in vivo clonal analysis. Cell Regen. 12, 33-39.
 
10. Helfer, G., and Wu, Q.F.* (2018). Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol. 238, R79-R94.
 
9. Wong, S.Z.H., Scott, E.P., Mu, W., Guo, X., Borgenheimer, E., Freeman, M., Ming, G.L., Wu, Q.F.*, Song, H.*, and Nakagawa, Y.* (2018). In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biol. 16, e2005211.
 
8. Wei, D., Gao, N., Li, L., Zhu, J.X., Diao, L., Huang, J., Han, Q.J., Wang, S., Xue, H., Wang, Q., Wu, Q.F., Zhang, X., and Bao, L.* (2017). alpha-Tubulin acetylation restricts axon overbranching by dampening microtubule plus-end dynamics in neurons. Cereb Cortex. 28, 3332-3346.
 
7. Yoon, K.J., Song, G., Qian, X., Pan, J., Xu, D., Rho, H.S., Kim, N.S., Habela, C., Zheng, L., Jacob, F., Zhang, F., Lee, E.M., Huang, W.K., Ringeling, F.R., Vissers, C., Li, C., Yuan, L., Kang, K., Kim, S., Yeo, J., Cheng, Y., Liu, S., Wen, Z., Qin, C.F., Wu, Q., Christian, K.M., Tang, H., Jin, P., Xu, Z., Qian, J., Zhu, H., Song, H., and Ming, G.L.* (2017). Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell. 21, 349-358.
 
6. Oh, Y., Zhang, F., Wang, Y., Lee, E.M., Choi, I.Y., Lim, H., Mirakhori, F., Li, R., Huang, L., Xu, T., Wu, H., Li, C., Qin, C.F., Wen, Z., Wu, Q.F., Tang, H.*, Xu, Z.*, Jin, P.*, Song, H., Ming, G.L.*, Lee, G. (2017). Zika virus directly infects peripheral neurons and induces cell death. Nat Neurosci. 20, 1209-1212.
 
5. Yang, L., Dong, F., Yang, Q., Yang, P.F., Wu, R., Wu, Q.F., Wu, D., Li, C.L., Zhong, Y.Q., Lu, Y.J., Cheng X, Xu FQ, Chen L, Bao L, Zhang X.* (2017). FGF13 selectively regulates heat nociception by interacting with Nav1.7. Neuron. 93, 806-821.
 
4. Liu, H., Wu, Q.F., Li, J.Y., Liu, X.J., Li, K.C., Zhong, Y.Q., Wu, D., Wang, Q., Lu, Y.J., Bao, L., Zhang X.* (2015). Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. J Mol Cell Biol. 7, 466-475.
 
3. Zhang, X.*, Bao, L., Yang, L., Wu, Q., and Li, S. (2012). Roles of intracellular fibroblast growth factors in neural development and functions. Sci China Life Sci. 55, 1038-1044.
 
2. Wu, Q.F., Yang, L., Li, S., Wang, Q., Yuan, X.B., Gao, X., Bao, L., and Zhang, X.* (2012). Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell. 149, 1549-1564.
 
1. Liu, X.J., Zhang, F.X., Liu, H., Li, K.C., Lu, Y.J., Wu, Q.F., Li, J.Y., Wang, B., Wang, Q., Lin, L.B., Zhong, Y.Q., Xiao, H.S., Bao, L., and Zhang, X.* (2012). Activin C expressed in nociceptive afferent neurons is required for suppressing inflammatory pain. Brain. 135, 391-403 33