位置:首页 > 研究队伍  


童依平


童依平,博士,研究员,博士生导师
 
  1988年中国农业大学获学士学位,1993年中国科学院生态环境研究中心获硕士学位,1999年中国科学院遗传与发育生物学研究所获博士学位。
  1988年进入中国科学院生态环境研究中心工作,主要研究小麦高效利用土壤养分的生理机制和遗传控制。2004年进入中国科学院中国科学院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室工作,主要研究植物高效利用氮、磷的分子机制。1992-1993年澳大利亚阿德莱德大学Waite农业研究所访问学者,2001-2002年英国Rothamsted Research访问学者。



主要研究内容:
  氮磷是植物必需的大量营养元素。农作物种间和种内不同基因型间存在显著的吸收利用氮磷效率的差异。揭示导致这种差异的分子机制以选育氮磷高效农作物新品种,是建立"少投入、多产出、保护环境"可持续发展农业的重要途径。

研究小组对此展开的研究包括:


  (1)小麦根系高效吸收氮磷的遗传机理 小麦吸收氮磷效率不仅与根系形态构型有关,还与根系形态的可塑性(对氮磷供应水平的响应)有关。为解析小麦根系高效吸收氮磷的遗传机理,我们主要开展如下研究:发掘控制小麦根系形态的遗传位点;明确氮磷信号调控小麦根系形态的分子机理。


  (2)氮磷信号调控小麦产量性状的遗传机制 氮磷缺乏会显著降低小麦穗数、穗粒数和千粒重,因此解析氮磷信号调控小麦产量性状的遗传机制是协同提高养分效率和产量的重要基础。


主要论文:
 
1.Ma, F., Xu, Y., Wang, R., Tong, Y., Zhang, A., Liu, D., & An, D. (2023). Identification of major QTLs for yield-related traits with improved genetic map in wheat. Frontiers in Plant Science14, 1138696.
2.Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., & Lu, Z. (2023). Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Science China-Life Sciences66(4), 819–834.
3.Zhang, Y., Li, Z., Liu, J., Zhang, Y., Ye, L., Peng, Y., Wang, H., Diao, H., Ma, Y., Wang, M., Xie, Y., Tang, T., Zhuang, Y., Teng, W., Tong, Y., Zhang, W., Lang, Z., Xue, Y., & Zhang, Y. (2022). Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nature Communications13(1), 6940.
4.Teng, W., He, X., & Tong, Y. (2022). Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: A Review. Plants (Basel, Switzerland)11(4), 492.
5.Zhao, F., Tian, S., Wu, Q., Li, Z., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Zou, S., Teng, W., Tong, Y., Tang, D., Mahato, A. K., Benhamed, M., Liu, Z., & Zhang, Y. (2022). Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Communications3(4), 100304.
6.Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., Lu, F., Jiao, Y., Yang, W., Lin, X., Sun, S., Lu, Z., Gao, L., Zhao, G., Cao, S., Chen, Q., … Chong, K. (2022). Wheat genomic study for genetic improvement of traits in China. Science China-Life Sciences65(9), 1718–1775.
7.Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., Teng, W., Tong, Y., Zhang, W., Xue, Y., Lang, Z., & Zhang, Y. (2021). Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Research31(12), 2276–2289.
8.Shi, J., & Tong, Y. (2021). TaLAMP1 plays key roles in plant architecture and yield response to nitrogen fertilizer in wheat. Frontiers in Plant Science11, 598015.
9.Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., Teng, W., Zhang, W., Tong, Y., Xue, Y., & Zhang, Y. (2021). An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. The Plant Cell33(4), 865–881.
10.Li, W., He, X., Chen, Y., Jing, Y., Shen, C., Yang, J., Teng, W., Zhao, X., Hu, W., Hu, M., Li, H., Miller, A. J., & Tong, Y. (2020). A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. The New Phytologist225(4), 1667–1680.
11.Fang, J., Zhu, W., & Tong, Y. (2020). Knock-down the expression of brassinosteroid receptor TaBRI1 reduces photosynthesis, tolerance to high light and high temperature stresses and grain yield in wheat. Plants (Basel, Switzerland)9(7), 840.
12.Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., Xue, Y., Zhang, W., & Zhang, Y. (2019). The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biology20(1), 139.
13.Fan, X., Cui, F., Ji, J., Zhang, W., Zhao, X., Liu, J., Meng, D., Tong, Y., Wang, T., & Li, J. (2019). Dissection of pleiotropic qtl regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional qtl mapping. Frontiers in Plant Science10, 187.
14.Li, L., Xu, Y., Ren, Y., Guo, Z., Li, J., Tong, Y., Lin, T., & Cui, D. (2019). Comparative proteomic analysis provides insights into the regulatory mechanisms of wheat primary root growth. Scientific Reports9(1), 11741.
15.Fan, X., Zhang, W., Zhang, N., Chen, M., Zheng, S., Zhao, C., Han, J., Liu, J., Zhang, X., Song, L., Ji, J., Liu, X., Ling, H., Tong, Y., Cui, F., Wang, T., & Li, J. (2018). Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics131(12), 2677–2698.
16.Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H., & Tong, Y. (2018). Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal16(11), 1858–1867.
17.Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N. P., & Fu, X. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature560(7720), 595–600.
18.Qi, M., Li, Z., Liu, C., Hu, W., Ye, L., Xie, Y., Zhuang, Y., Zhao, F., Teng, W., Zheng, Q., Fan, Z., Xu, L., Lang, Z., Tong, Y., & Zhang, Y. (2018). CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome. Nucleic Acids Research46(18), e107.
19.Ren, Y., Qian, Y., Xu, Y., Zou, C., Liu, D., Zhao, X., Zhang, A., & Tong, Y. (2017). Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science8, 2096.
20.Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., Ullah, I., Tong, Y., & Li, X. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology17(1), 229.
21.Shao, A., Ma, W., Zhao, X., Hu, M., He, X., Teng, W., Li, H., & Tong, Y. (2017). The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiology174(4), 2274–2288.
22.Su, Q., Zhang, X., Zhang, W., Zhang, N., Song, L., Liu, L., Xue, X., Liu, G., Liu, J., Meng, D., Zhi, L., Ji, J., Zhao, X., Yang, C., Tong, Y., Liu, Z., & Li, J. (2018). QTL Detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-Bbased lLinkage mMap. Frontiers in Plant Science9, 1484.
23.Sun, Z., Su, C., Yun, J., Jiang, Q., Wang, L., Wang, Y., Cao, D., Zhao, F., Zhao, Q., Zhang, M., Zhou, B., Zhang, L., Kong, F., Liu, B., Tong, Y., & Li, X. (2019). Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal17(1), 50–62.
24.Xu, Y., Ren, Y., Li, J., Li, L., Chen, S., Wang, Z., Xin, Z., Chen, F., Lin, T., Cui, D., & Tong, Y. (2019). Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat. Frontiers in Plant Science10, 151.
25.Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., & Tong, Y. (2019). Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal17(9), 1823–1833.
26.Deng, Y., Teng, W., Tong, Y. P., Chen, X. P., & Zou, C. Q. (2018). Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Frontiers in Plant Science9, 1614.
27.Cui, F., Zhang, N., Fan, X. L., Zhang, W., Zhao, C. H., Yang, L. J., Pan, R. Q., Chen, M., Han, J., Zhao, X. Q., Ji, J., Tong, Y. P., Zhang, H. X., Jia, J. Z., Zhao, G. Y., & Li, J. M. (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports7(1), 3788.
28.Zhang, N., Fan, X., Cui, F., Zhao, C., Zhang, W., Zhao, X., Yang, L., Pan, R., Chen, M., Han, J., Ji, J., Liu, D., Zhao, Z., Tong, Y., Zhang, A., Wang, T., & Li, J. (2017). Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics130(6), 1235–1252.
29.Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., Tong, Y., & Li, J. (2017). Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Scientific Reports7, 44677.
30.Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., & Jiao, Y. (2017). Transcriptome association identifies regulators of wheat spike architecture. Plant Physiology175(2), 746–757.
31.Teng, W., Zhao, Y. Y., Zhao, X. Q., He, X., Ma, W. Y., Deng, Y., Chen, X. P., & Tong, Y. P. (2017). Genome-wide identification, characterization, and expression analysis of pht1 phosphate transporters in wheat. Frontiers in Plant Science8, 543.