位置:首页 > 研究队伍  


陈化榜


陈化榜,博士,研究员,博士生导师

  1984年山东农业大学学士,1990年山东农业大学硕 士,1999年美国Purdue University博士。1993-2008年在美国学习工作,曾任Seminis Vegetable Seeds 高级研究员和Indiana Crop Improvement Association实验室主任。2011年入选中国科学院“百人计划”, 2015年“百人计划”终期评估优秀。曾获美国High Scholarship, Outstanding Achievement & Service,The Honor Society of Agriculture Gamma Sigma Delta USA和中国国家技术发明一等奖。



研究方向 
    
        我组的主要研究方向是玉米遗传育种,重点领域包括玉米特异种质资源创新与利用、控制重要农艺性状基因的克隆、育种新理论及新方法等;并致力于高产、稳产、高效、优质创新型玉米新品种的规模化选育。 
      
玉米育性相关基因的克隆和应用 
    
        玉米育性的研究主要包括三个方面:单向异交不亲和、质核互作雄性不育和隐性核基因雄性不育。单向异交不亲和:有一种玉米材料,自交可以结实,异交时做父本可授精结实、做母本不能结实,这种现象称为单向异交不亲和。研究表明,这是由一类Ga (Gametophyte factor)基因所控制的。目前我们已鉴定了一系列Ga基因的材料并对其进行定位,利用这类基因,可实现转基因玉米与常规玉米的安全隔离、专用玉米与普通玉米的生物学隔离等。同时,以此材料为基础,研究玉米传粉授精过程中基因互作和信号传导以及不亲和的机理。质核互作雄性不育:三系配套制种技术理论基于质核互作的雄性不育,在玉米中主要存在T、S、C三种类型。其中T型已经在上世纪广泛应用,但由于小斑病的大爆发而销声匿迹。对于S和C型的不育研究还在进行中。本组主要集中在S型质核互作雄性不育基因的克隆、不育机理研究以及制种技术的应用等方面。隐性核基因雄性不育:在玉米雄穗发育(花序起始到散粉)的各个进程中,某些关键基因的隐性纯合突变会导致雄性不育现象。本组搜集并创制了一系列玉米核基因的雄性不育突变体,研究玉米的雄穗发育过程和不育机理。同时克隆这类基因,用于种子生产技术,形成新型制种技术体系。 
      
玉米耐盐机理研究和分子标记的开发与利用 
    
        玉米是盐敏感作物,随着土壤盐渍化的加重,提高玉米耐盐能力显得尤为重要。高盐可对玉米造成渗透胁迫、离子胁迫等多方面影响,玉米对盐胁迫的响应也由多个QTL共同作用而成。利用国内外优异种质资源,鉴定筛选玉米耐盐极端材料,采用组学、生理学以及遗传学等多种手段阐述玉米耐盐机理,并将有实用价值的分子标记用于玉米耐盐育种。 
    
玉米高效育种技术研究和创新型新品种培育及推广应用 
    
        未来的玉米品种,是集高产、稳产、优质、高效于一体的基因型群体,常规育种技术很难育成满足生产需求的突破性新品种。我们实验室致力于从传统的”经验育种” 到定向、高效的“精确育种”转变,以大幅度提高育种效率。通过全基因组分析划分骨干亲本杂种优势群,通过群内杂交组配育种基础群体,通过DH技术快速纯合优良变异,通过分子标记辅助选择进行优良基因的组装与集成,通过异地穿梭和温室加代缩短育种年限,通过大规模试验测试,提高育种效率,研究建立完善的玉米高效育种技术体系,为我国玉米育种和生产做出贡献。 

代表性论文
 
(1)  Zhaogui Zhang, Baocai Zhang, Zhibin Chen, Dongmei Zhang, Huairen Zhang, Hang Wang,Yu’e Zhang, Darun Cai, Juan Liu, Senlin Xiao, Yanqing Huo, Jie Liu, Lanjun Zhang, Mingming Wang, Xu Liu, Yongbiao Xue, Li Zhao, Yihua Zhou & Huabang Chen, A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateralcross-incompatibility, Nature Communications, 2018, 9:3678, DOI: 10.1038/s41467-018-06139-8.
 
(2)  Man Wang, Zhibin Chen, Huairen Zhang, Huabang Chen and Xiquan Gao,Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor
2-Mediated Cross-Incompatibility in Maize,Int. J. Mol. Sci. 2018, 19, 1757; doi:10.3390/ijms19061757。
 
(3)   Youhui Tian, Senlin Xiao, Juan Liu, Yamuna Somaratne, Hua Zhang, Mingming Wang, HuairenZhang, Li Zhao & Huabang Chen, MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize, Scientific Reports, 2017, 7: 16736 | DOI:10.1038/s41598-017-16930-0.
 
(4) Yamuna Somaratne, Youhui Tian, Hua Zhang, Mingming Wang, Yanqing Huo, Fengge Cao, Li Zhao, Huabang Chen, ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize, The Plant Journal, 2017, DOI: 10.1111/tpj.13476.
 
(5) Chen, XY; Zhang, H; Sun, HY; Luo, HB; Zhao, L; Dong, ZB; Yan, SS; Zhao, C; Liu, RY; Xu, CY; Li, S; Chen, HB; Jin WW. IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation. Plant Physiology. 2017, 173: 1-20.
 
(6) Dezhou Cui, Dandan Wu, Jie Liu, Detao Li, Chunyan Xu, Song Li, Peng Li, Hua Zhang, Xu Liu, Chuan Jiang, Liwen Wang, Tingting Chen, Huabang Chen, Li Zhao, Proteomic Analysis of Seedling Roots of Two Maize Inbred Lines That Differ Significantly in the Salt Stress Response, PLoS One, 2015, 10(2): e0116697.
 
(7) Dezhou Cui, Dandan Wu, Yamuna, Chunyan Xu, Song Li, Peng Li, Hua Zhang, Huabang Chen, Li Zhao, QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.), Euphytica, 2015, 203: 273-283.
 
(8) Song Li, Chunyan Xu, Dezhou Cui, Huaihua Liu, Peng Li, Hua Zhang, Youhui Tian, ZhibinChen, Huabang Chen, and Xianrong Zhao, Deep Sequencing of the Pistil Transcriptome in the Cross Incompatible Maize, Molecular Plant Breeding, 2014, Vol.5, No.10, 1-14.
 
(9) Xu Liu, He Sun, Ping Wu, Youhui Tian, Dezhou Cui, Chunyan Xu, Song Li, Peng Li, Hua Zhang , Tingting Chen, Detao Li, Xianrong Zhao, Yu’e Zhang, Yongbiao Xue, and Huabang Chen, Fine Mapping of the Cross-incompatibility Locus Gametophytic Factor 1 (ga1) Using a Homogeneous Maize Population, Crop Science, 2014, 54:873–881.
 
(10) Tingting Chen, Lihua Ning, Xu Liu, Dezhou Cui, Hua Zhang, Detao Li, Li Zhao, and Huabang Chen, Development of Functional Molecular Markers of SbeI and SbeIIb for the High Amylose Maize Germplasm Line GEMS-0067, CropScience, 2013, 53:482-490.
 
(11) Detao Li, Liwen Wang, Xu Liu, Dezhou Cui, Tingting Chen, Hua Zhang, Chuan Jiang, Chunyan Xu, Peng Li, Song Li, Li Zhao, Huabang Chen, Deep Sequencing of Maize Small RNAs Reveals a Diverse Set of MicroRNA in Dry and Imbibed Seeds, PlosOne, 2013, 8(1):1-14.
 
(12) Hua Zhang, Chuan Jiang, Xu Liu, Dezhou Cui, Detao Li, Liwen Wang, Tingting Chen, Huaihua Liu, Xia Ma, Lihua Ning and Huabang Chen, Genetic Analysis and Fine Mapping of the Ga1-S Gene Region Conferring Cross Incompatibility in Maize, Theor. Appl. Genet, 2012, 124(3):459-465.
 
(13) Liwen Wang, Huaihua Liu, Detao Li and Huabang Chen, Identification and characterization of maize microRNAs involved in the very early stage of seed germination, BMC Genomics, 2011,12:154.
 
(14) Nan Liu and Huabang Chen, An Accurate and Rapid PCR-based Zygosity Testing Method for Genetically Modified Maize (Zea Mays L.), GMO Biosafety Research Vol 1 No 1, 2010, DOI: 10.5376/gmo.2010.01.000.
 
(15) Huabang Chen and Rick, Vierling, Promoter analysis of soybean seed coat peroxidase gene Ep, Seed Technology, 2009, 31(1): 144-155.
 
(16) Dong Z., Jiang C., Chen X., Zhang T., Ding L., Song W., Luo H., Lai J., Liu R., Chen H., Zhang X. and Jin W, Maize LAZY1 mediates shoot gravitropism and inf lores cence development through regulating auxin transport, auxin signaling and light response, Plant Physiol, 2013, 163: 1306-1322.
 
(17) Sardesai N., Lee L., Chen H., Yi H., Olbricht G., Stirnberg A., Jeffries J., Xiong K., Doerge R.W., & Gelvin S, Cytokinins secreted by agrobacterium promote transformation by repressing a plant Myb transcription factor, Science Signal, 2013, Nov 19; 6(302):ra100.