位置:首页 > 研究队伍  


姜丹华


姜丹,博士,研究,博士生导师
 
        2003年获山东大学学士学位,2006年获上海大学硕士学位,2012年获新加坡国立大学 (National University of Singapore) 博士学位,2013年至2018年分别在新加坡Temasek Life Sciences Laboratory 及奥地利Gregor Mendel Institute 从事博士后研究。2018年加入中国科学院遗传与发育生物学研究所。


        实验室主要研究植物染色质调控以及植物适应环境,耐逆的分子遗传机理。
 
研究方向
 
        1. 植物染色质调控
        染色质是真核生物遗传物质的载体,并携带重要的表观遗传信息。我们利用模式植物拟南芥和作物为材料,研究染色质调控的机理及其在植物环境响应中的作用,尤其关注组蛋白变体在染色质调控中的作用机制。
 
        2. 作物耐逆的分子遗传机理
        提高作物的耐逆性对于粮食稳产具有重要意义。我们将以耐逆、耐贫瘠且C4高光效的新兴模式作物小米(Setaria italica)为研究材料,利用遗传筛选、多组学分析等方法挖掘耐逆相关位点,并分析用于其它黍亚科相近作物如玉米、高粱等的遗传改良。

主要论文
(完整论文列表请见Google Scholar
https://scholar.google.com/citations?user=ZzvFigEAAAAJ&hl=en)
 
 
Zhao T*, Lu J*, Zhang H*, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nature Communications, 2022, 13: 7728.
 
Pan J*, Zhang H*, Zhan Z, Zhao T, Jiang D. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis. Journal of Genetics and Genomics, 2022, https://doi.org/10.1016/j.jgg.2022.09.001.
 
Zhang H*, Li X*, Song R*, Zhan Z*, Zhao F, Li Z, Jiang D. Cap-binding complex assists RNA polymerase II transcription in plant salt stress response. Plant Cell & Environment, 2022, 45: 2780-2793.
 
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Molecular Plant, 2021, 14: 1799-1813
 
Zhao F, Zhang H, Zhao T, Li Z, Jiang D. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. Plant Physiology, 2021, 186: 2051-2063.
 
Borg M*, Jiang D*, Berger F. Histone variants take center stage in shaping the epigenome. Current Opinion in Plant Biology, 2021, 61: 101991.
 
Jiang D*, Borg M*, Lorkovic ZJ, Montgomery S, Osakabe A, Yelagandula R, Axelsson E, Berger F. The evolution and functional divergence of the histone H2B family in plants. Plos Genetics, 2020, 16: e1008964.
 
Zhao T, Zhan Z, Jiang D. Histone modifications and their regulatory roles in plant development and environmental memory. Journal of Genetics and Genomics, 2019, 46: 467-476.
 
Li Z*, Jiang D*, He Y. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nature Plants, 2018, 4: 836-846.
 
Jiang D, Berger F. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science, 2017, 357: 1146-1149.
 
Jiang D, Berger F. Histone variants in plant transcriptional regulation. Biochimica et Biophysoca Acta (BBA)-Gene Regulatory Mechanisms, 2017, 1: 123-130.
 
Li Z*, Jiang D*, Fu X, Luo X, Liu R, He Y. Intergration of histone methylations with RNA processing by the nuclear mRNA cap binding complex. Nature Plants, 2016, 2: 16015.
 
Gu X*, Jiang D*, Yang W*, Jacob Y, Michaels S, He Y. Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. Plos Genetics, 2011, e1002366.
 
Jiang D, Kong N, Gu X, Li Z, He Y. Arabidopsis COMPASS-like complexes mediate histone H3 lysine 4 trimethylation to control the floral transition and plant development. Plos Genetics, 2011, e1001330.
 
Jiang D, Gu X, He Y. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 2009, 21: 1733-1746.
 
Jiang D, Wang Y, Wang Y, He Y. Rerpression of the FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components. Plos ONE, 2008, 3: e3404.
 
Jiang D*, Yang W*, He Y, Amasino RM. Arabidopsis relatives of human histone-lysine specific demethylase 1 repress expression FWA and FLOWERING LOCUS C and thus promote floral transition. Plant Cell, 2007, 19: 2975-2987.