Search
About us
Research Centers
Key Laboratories
Research
Faculty
CAS Members
Center for Genome Biology
Molecular Agrobiology
Developmental Biology
Molecular Systems Biology
Agro-Resources Research
International Cooperation
News
Resources
Education & Training
Join Us
Societies & Publications
Papers
Links
  Location: Home >> Faculty >> Molecular Agrobiology
  Molecular Agrobiology


Yiping Tong


ACADEMIC AWARDS
1988 Bachelor of Agronomy, Beijing Agricultural University, Beijing, China
1993 Master Degree, Research Center for Eco-environmental Sciences (RCEES), Chinese Academy of Science (CAS), Beijing, China.
1999 PhD Institute of Genetics and Developmental Sciences (IGDB), Beijing, China.
 
EMPLOYMENT HISTORY
1988-2004 Research Assistant (1988-1993), Assistant Professor (1993-2002), and Associate Professor (2002-2004), RCEES, CAS, Beijing, China
1992-1993 Waite Institute of Agricultural Research, Adelaide University, South Australia
2001-2002 Visiting Scholarship, Rothamsted Research, Harpendon, Herts, UK
2004-2006 Associate Professor, IGDB, CAS, Beijing, China
2006-present, Principle investigator, IGDB, CAS, China


RESEARCH INTERESTS/AREAS
(1) Identifying QTL/genes regulating nitrogen and phosphorus use in wheat
(2) Molecular breeding of wheat varieties with improved nitrogen and phosphorus use efficiency

REFEREED PUBLICATIONS

1.Ma, F., Xu, Y., Wang, R., Tong, Y., Zhang, A., Liu, D., & An, D. (2023). Identification of major QTLs for yield-related traits with improved genetic map in wheat. Frontiers in Plant Science14, 1138696.
2.Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., & Lu, Z. (2023). Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Science China-Life Sciences66(4), 819–834.
3.Zhang, Y., Li, Z., Liu, J., Zhang, Y., Ye, L., Peng, Y., Wang, H., Diao, H., Ma, Y., Wang, M., Xie, Y., Tang, T., Zhuang, Y., Teng, W., Tong, Y., Zhang, W., Lang, Z., Xue, Y., & Zhang, Y. (2022). Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nature Communications13(1), 6940.
4.Teng, W., He, X., & Tong, Y. (2022). Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: A Review. Plants (Basel, Switzerland)11(4), 492.
5.Zhao, F., Tian, S., Wu, Q., Li, Z., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Zou, S., Teng, W., Tong, Y., Tang, D., Mahato, A. K., Benhamed, M., Liu, Z., & Zhang, Y. (2022). Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Communications3(4), 100304.
6.Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., Lu, F., Jiao, Y., Yang, W., Lin, X., Sun, S., Lu, Z., Gao, L., Zhao, G., Cao, S., Chen, Q., … Chong, K. (2022). Wheat genomic study for genetic improvement of traits in China. Science China-Life Sciences65(9), 1718–1775.
7.Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., Teng, W., Tong, Y., Zhang, W., Xue, Y., Lang, Z., & Zhang, Y. (2021). Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Research31(12), 2276–2289.
8.Shi, J., & Tong, Y. (2021). TaLAMP1 plays key roles in plant architecture and yield response to nitrogen fertilizer in wheat. Frontiers in Plant Science11, 598015.
9.Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., Teng, W., Zhang, W., Tong, Y., Xue, Y., & Zhang, Y. (2021). An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. The Plant Cell33(4), 865–881.
10.Li, W., He, X., Chen, Y., Jing, Y., Shen, C., Yang, J., Teng, W., Zhao, X., Hu, W., Hu, M., Li, H., Miller, A. J., & Tong, Y. (2020). A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. The New Phytologist225(4), 1667–1680.
11.Fang, J., Zhu, W., & Tong, Y. (2020). Knock-down the expression of brassinosteroid receptor TaBRI1 reduces photosynthesis, tolerance to high light and high temperature stresses and grain yield in wheat. Plants (Basel, Switzerland)9(7), 840.
12.Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., Xue, Y., Zhang, W., & Zhang, Y. (2019). The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biology20(1), 139.
13.Fan, X., Cui, F., Ji, J., Zhang, W., Zhao, X., Liu, J., Meng, D., Tong, Y., Wang, T., & Li, J. (2019). Dissection of pleiotropic qtl regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional qtl mapping. Frontiers in Plant Science10, 187.
14.Li, L., Xu, Y., Ren, Y., Guo, Z., Li, J., Tong, Y., Lin, T., & Cui, D. (2019). Comparative proteomic analysis provides insights into the regulatory mechanisms of wheat primary root growth. Scientific Reports9(1), 11741.
15.Fan, X., Zhang, W., Zhang, N., Chen, M., Zheng, S., Zhao, C., Han, J., Liu, J., Zhang, X., Song, L., Ji, J., Liu, X., Ling, H., Tong, Y., Cui, F., Wang, T., & Li, J. (2018). Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics131(12), 2677–2698.
16.Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H., & Tong, Y. (2018). Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal16(11), 1858–1867.
17.Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N. P., & Fu, X. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature560(7720), 595–600.
18.Qi, M., Li, Z., Liu, C., Hu, W., Ye, L., Xie, Y., Zhuang, Y., Zhao, F., Teng, W., Zheng, Q., Fan, Z., Xu, L., Lang, Z., Tong, Y., & Zhang, Y. (2018). CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome. Nucleic Acids Research46(18), e107.
19.Ren, Y., Qian, Y., Xu, Y., Zou, C., Liu, D., Zhao, X., Zhang, A., & Tong, Y. (2017). Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science8, 2096.
20.Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., Ullah, I., Tong, Y., & Li, X. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology17(1), 229.
21.Shao, A., Ma, W., Zhao, X., Hu, M., He, X., Teng, W., Li, H., & Tong, Y. (2017). The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiology174(4), 2274–2288.
22.Su, Q., Zhang, X., Zhang, W., Zhang, N., Song, L., Liu, L., Xue, X., Liu, G., Liu, J., Meng, D., Zhi, L., Ji, J., Zhao, X., Yang, C., Tong, Y., Liu, Z., & Li, J. (2018). QTL Detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-Bbased lLinkage mMap. Frontiers in Plant Science9, 1484.
23.Sun, Z., Su, C., Yun, J., Jiang, Q., Wang, L., Wang, Y., Cao, D., Zhao, F., Zhao, Q., Zhang, M., Zhou, B., Zhang, L., Kong, F., Liu, B., Tong, Y., & Li, X. (2019). Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal17(1), 50–62.
24.Xu, Y., Ren, Y., Li, J., Li, L., Chen, S., Wang, Z., Xin, Z., Chen, F., Lin, T., Cui, D., & Tong, Y. (2019). Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat. Frontiers in Plant Science10, 151.
25.Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., & Tong, Y. (2019). Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal17(9), 1823–1833.
26.Deng, Y., Teng, W., Tong, Y. P., Chen, X. P., & Zou, C. Q. (2018). Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Frontiers in Plant Science9, 1614.
27.Cui, F., Zhang, N., Fan, X. L., Zhang, W., Zhao, C. H., Yang, L. J., Pan, R. Q., Chen, M., Han, J., Zhao, X. Q., Ji, J., Tong, Y. P., Zhang, H. X., Jia, J. Z., Zhao, G. Y., & Li, J. M. (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports7(1), 3788.
28.Zhang, N., Fan, X., Cui, F., Zhao, C., Zhang, W., Zhao, X., Yang, L., Pan, R., Chen, M., Han, J., Ji, J., Liu, D., Zhao, Z., Tong, Y., Zhang, A., Wang, T., & Li, J. (2017). Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics130(6), 1235–1252.
29.Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., Tong, Y., & Li, J. (2017). Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Scientific Reports7, 44677.
30.Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., & Jiao, Y. (2017). Transcriptome association identifies regulators of wheat spike architecture. Plant Physiology175(2), 746–757.
31.Teng, W., Zhao, Y. Y., Zhao, X. Q., He, X., Ma, W. Y., Deng, Y., Chen, X. P., & Tong, Y. P. (2017). Genome-wide identification, characterization, and expression analysis of pht1 phosphate transporters in wheat. Frontiers in Plant Science8, 543.